
DESIGN OF A SECURE TIMESTAMPING SERVICEWITH MINIMAL TRUST REQUIREMENTH. Massias, X. Serret Avila, J.-J. QuisquaterUCL Crypto groupPlae du Levant, 3 , B-1348 Louvain-la-Neuve, Belgiummassias, serret, jjq�die.ul.a.beThis paper presents our design of a timestamping system for the Belgianprojet TIMESEC. We �rst introdue the timestamping method used and wejustify our hoie for it. Then we present the design of our implementationas well as some of the important issues we found and the solutions we gaveto them.INTRODUCTIONThe reation date of digital douments and the times expressed in them arebeoming inreasingly important as digital douments are being introdued intothe legal domain.We de�ne �digital timestamp� as a digital erti�ate intended to assure theexistene of a generi digital doument at a ertain time.In order to produe fully trusted timestamps, very spei� designs have beenintrodued. We give an overview of the most relevant methods and we introduethe one we used for the implementation of the Belgian projet TIMESEC (see[PRQ+98℄), justifying our hoie for it. Then we present the design of the times-tamping system we made for this projet. We separate the di�erent proesses thatare: doument timestamping, timestamp veri�ation, auditing, system start-upand system shutdown.INTRODUCTION OF THE TIMESTAMPING TECHNIQUESThere are two families of timestamping tehniques: those that work with atrusted third party and those that are based on the onept of distributed trust.Tehniques based on a trusted third party rely on the impartiality of the entitythat is in harge of issuing the timestamps. Tehniques based on the distributedtrust onsist on making douments dated and signed by a large set of peoplein order to onvine the veri�ers that we ould not have orrupted all of them.The trusted third party tehniques an also be lassi�ed into two di�erent kinds:those where the third party is ompletely trusted and those where it is partially



trusted. A detailed study of timestamping tehniques an be found in [MQ97℄.We believe that tehniques based on distributed trust are not really workable in aprofessional environment, that is why we onentrate on the trusted third partyapproah. Nevertheless, we imposed to ourselves the requirement to lower theneessary trust on the third party to the maximum extend.The �easy� solution, whih onsists on onatenating the doument with theurrent time and sign the result, has been disarded beause it has two maindrawbaks:1. We must ompletely trust the third party, alled Seure Timestamp Autho-rity (STA), whih an issue undetetable bak-dated timestamps.2. The limited lifetime of ryptographi signatures, whih an be shorter thanthe doument time-to-life.The timestamping method that we have hosen uses a binary tree struture andhas been desribed in [HS91℄ and [HS97℄. This method works by rounds. For eahround a binary tree is onstruted with the requests �lled during it. The roundshave a �xed duration, whih is the result of a trade-o� between the timestampsauray and the number of requests submitted. In Figure 1 we an see a graphialrepresentation of a round onstruted using this method.

y2 y3 y4 y5 y6 y7 y8y1

H12 H34 H56

H58H14

H18

H78

RH(i-1) RH(i)

Figure 1: The binary tree strutureEah of the timestamp requests onsists on a hash value of a given doument.The leafs of the tree are eah of those hash values. The leaf values are then



onatenated by two and hashed again to obtain the parent value (Ex: H34 =H(y3 j y4) ). The proess is repeated for eah level until a single value is obtained.Finally, the top value of the round tree (H18), alled the �Round Root Value�, isthen onatenated with the value obtained for the preeding round (RHi�1) andthen hashed again to obtain the atual �Round Value� (RHi).The timestamp of the doument ontains all the values neessary to rebuiltthe orresponding branh of the tree. For example, the timestamp for y4 ontainsf(y3; L); (H12; L); (H58; R); (RHi�1; L)g. The veri�ation proess onsists of re-building the tree's branh and the linking hain of �Round Values� until a trusted(from the veri�er point of view) �Round Value� is reomputed. This veri�ationmethod is explained in detail in [HS91℄ and [MQ97℄.Periodially, one of the �Round Values� is published on an unmodi�able,widely witnessed media (Ex: newspaper...). These speial �Round Values�, whihwe will all �Big Round Values�, are the base of the trust for all the timestampsissued. All veri�ers must trust these �Big Round Values� as well as the timeassoiated with them. This is a reasonable requirement beause those values arewidely witnessed. The absolute time trusted by all the potential veri�ers is thetime indiated by the unmodi�able media. We suppose that this time is the samethan the time indiated by the STA for the �Big Round�. Foring the lients tohek the timestamps as soon as they get them is another requirement. In thatway the proess is ontinuously audited and the STA will not have any marginto maneuver in an untrusted way.A very useful method for extending the lifetime of timestamps is desribedin [BHS92℄. It basially onsists on re-timestamping the hash of the doumentas well as the original timestamp before the hash funtion is broken.We build two trees in parallel for eah round using two di�erent hash funtions(SHA-1 and RIPEMD-160). In that way, the system remains seure in the aseof an unexpeted break of one of the hash funtions used.DESCRIPTION AND ANALYSIS OF THE TIMESEC TIMESTAMPING IM-PLEMENTATIONWe will now introdue the basi design of the system we have developed,whih is based on the tehnique introdued above.Initially, the user designates a doument to be timestamped. Two hashesof it are reated using the SHA-1 and RIPEMD-160 algorithms. The request



ontaining the two hashes is then sent by the lient to the STA . Upon requestreeipt, the STA reates the orresponding timestamp using the following proess.Main desription of the timestamping proessThe system design follows a highly deoupled multi-threaded approah. Eahstep is assigned to a spei� omponent, whih has its own di�erent thread. Inthe Figure 2 we present a shemati outline of the proess. The multi-threadapproah is justi�ed by the requirement to obtain a highly responsive and loadindependent implementation. By isolating the proess harges into independentsteps we try to deouple the load between them. Eah step has also a workingqueue. Those queues are in harge of softening the speed di�erenes between thedi�erent proess steps.
Request TimerNetwork Listener

Network AnswerLogger

Round Queue Coordinator

Round Queue Coordinator

Timestamp Generator

i-1

i

Figure 2: Interations between the omponentsThe �Network Listener� is in harge of ontinuously listen to the lients'timestamp requests. The �Request Timer� reeives the onstruted requests fromthe �Network Listener�. Then, it times and forwards them to the atual �RoundQueue Coordinator�. Eah round has its own �Round Queue Coordinator�, whihis in harge of ompiling and proessing into a tree all the requests belongingto the round. When the round tree has been omputed it is forwarded to the�Timestamp Generator�, whih generates the orresponding timestamps. One atimestamp is generated, the �Timestamp Generator� forwards it to the �NetworkAnswer�, whih in turn forwards it to the lient.The Network ListenerThe �Network Listener� responsibility is to listen the network ontinuously fortimestamping requests. When it reeives a data stream, the �Network Listener�heks it in order to determine if it is a valid request. In the ase it is, it sendsan a�rmative ontat response to the lient, it reates a �Timestamp Request�objet and adds it to the �Request Timer� queue. Then it goes bak to listen



to the network. In the ase the request message is not orret, it sends an errormessage to the lient.We tried to give as few tasks as possible to the �Network Listener� to let itlisten the network, whih is its primary task. In order to improve the overallperformane, and to avoid the fat that a slow lient onnetion ould a�et theother ones, several opies of the �Network Listener� an be ative at the sametime.The Request TimerThere is only an instane of �The Request Timer� in the system. The �RequestTimer� is in harge of ordering the requests reeived from the several �NetworkListeners� and timing them aordingly. All delays introdued by the systembefore that point (namely, those introdued by the �Network Listener�) are in-distinguishable from network delays, and thus not taken into aount. One arequest has been timed, the �Request Timer� tries to add it to the urrent roundqueue. As the rounds are losed asynhronously by the orresponding �RoundQueue Coordinator� this operation is not always suessful, in that ase, the �Re-quest Timer� re-times the request and retries to queue it until it �nds an openround. In that proess the request sequene is preserved in order to provide aonsistent behavior.Round Queue Coordinator reation: �Round Queue Coordinator� instanesare reated by the �Request Timer� upon proessing a request orresponding to anon-existing round. The reation of the rounds that have no requests is delayeduntil a request is reeived. One reated, those empty rounds are immediatelyproessed, introduing no signi�ant delay into the proess.Round number determination: Round numbers form a non-interrupted in-reasing integer sequene. Rounds are always in synhronization with the roundduration intervals. In other words, if the round duration is one minute, all roundswill start in an absolute minute boundary, independently from when the systemhas been started. �Big Rounds� are determined by the �Request Timer� using asimilar approah to the one followed to determine the round boundaries. We donot restrit the duration of the round to a �xed value for the lifetime of the STA.To ahieve this, the information about round and �Big Round� duration is intro-dued into the system at the start-up phase. If we wish to modify it, we must



�rst shutdown the system, hange the values and then restart the system, whihis the only safe proedure we had foreseen.The Round Queue CoordinatorThe �rst thing a �Round Queue Coordinator� does is to determine the o�setbetween the atual time and the round due time. Requests will be aeptedonly if the round is still valid (round is open). When requested by the �RequestTimer�, the �Round Queue Coordinator� adds the request to the queue and logsit. This logged request will be latter used for proess auditing purposes.When the round time is over, it obtains the �Round Values� from the preed-ing round and it omputes the round binary trees (one for eah hash algorithm)to obtain the orresponding �Round Values�. Then it gives the omputed trees tothe �Timestamp Generator� and �nally adds to the log the �Round Values� andthe �Round Root Values�. Those logged values will be latter used for timestampveri�ation and proess auditing purposes. If the atual round is a �Big Round�those values are forwarded to a �xed media as well.As you may have notied in the setion �Introdution of the timestampingtehniques�, the binary tree is de�ned for a number of leafs (requests) that is apower of 2. In general, this is not the ase. We ould reate fake requests to �nishthe tree, but this will add a lot of requests (if we have 2n+1 requests, then we willneed to add 2n � 1 fake requests). A smarter solution is to add a random valueonly when we need it. Then, we add at most n values (one for eah level of thetree). We all these nodes �Speial Node�, whih will be logged as well. Insteadof random values we ould hoose to use 0 or another �xed value, this would beas seure as our hoie if the hash funtions were �perfet�. As hash funtions areonly �presumably perfet�, we though that we ould made our design more seurewith really few additional omputations.In our implementation, the STA queues the requests and omputes the tree atthe end of the round. At �rst sight, it ould seem a more natural solution to buildthe tree as soon as the requests arrive. At the end of the round, the omputationof the tree would then be ended by getting the last �Round Value� and omputingthe atual �Round Value�. In fat, this solution is harder to implement, and hasno e�et on the seurity ahieved as no one an hek that the STA does notperform any reordering of the requests before it publishes the �Round Value�.



The Timestamp GeneratorThe �Timestamp Generator� proesses the round trees by pairs (one for eah hashalgorithm) in order to generate the timestamps for eah of the requests ontainedin the trees. In order to maximize the system responsiveness, one a timestamphas been generated it is immediately forwarded to the �Network Answer�. Finally,when all the timestamps ontained in a round tree have been proessed the treeis destroyed.The Network AnswerThe �Network Answer� is in harge of forwarding the proessed timestamps tothe lients. It has been spei�ed in suh a way that it an run several threads,in that way the rest of the timestamping proess an be isolated from possiblenetwork delay problemati.The timestamp veri�ation proessFirst, the veri�er designates a doument and its orresponding timestamp forveri�ation. Then, the veri�er's system (his personal omputer or a remote om-puter independent from the STA) generates the two doument hashes and heksif they math with those ontained in the timestamp. Afterwards, the �RoundValue� is reonstruted using the data provided in the timestamp. If the om-puted �Round Value� is onsistent with the one ontained in the timestamp thenthe next step in the veri�ation proess is to ompare this �Round Value� to the�Round Value� obtained from the STA repository. Finally, the veri�er provides hissystem with the two �Big Round Values� that he founds in the �unmodi�able me-dia�; the veri�er's system gets all the neessary �Round Values� and �Root RoundValues� from the STA and it heks the ohereny of the two linking hains (onefor eah hash funtion).The audit proessThe auditor designates two �Big Rounds�, whih he fethes from a �xed media.The system behavior will be heked between these two �Big Round Values�. Foreah round, the auditor's system gets all the hash values (leafs of the tree and�Speial Nodes�) and the �Round Value� from the STA. Then, it onstruts thetwo trees and heks that the �Round Value� is onsistent. These two steps are



repeated until all the onsidered rounds are heked or until an error has beenfound. In that way, all theoretially veri�able system behavior an be veri�ed aposteriori.The system start-up proessHere the most sensible issue is to be able to orretly start-up the system whenan unexpeted shutdown has ourred. If that is the ase, the log will show anun�nished round; then the system marks all entries after the last omplete roundas invalid and publishes that round as a �Big Round�. If the log was onsistent,it aesses the last valid �Round Value� in the log and publishes it as a �BigRound�. This proess insures a fully veri�able behavior; we are able to detetnon fully-proessed requests.The system shutdown proessThe administrator signals the system to shutdown. No more timestamping re-quests are aepted. The system waits until the urrent round is �nished andthis �Round Value� is published as �Big Round�.REFERENCES[BHS92℄ D. Bayer, S. Haber, and W.-S. Stornetta. Improving the e�ienyand reliability of digital timestamping. In Springer Verlag, editor,Sequenes'91: Methods in Communiation, Seurity, and ComputerSiene, pages 329�334, 1992.[HS91℄ S. Haber and W.-S. Stornetta. How to timestamp a digital doument.Journal of Cryptology, 3(2):99�112, 1991.[HS97℄ S. Haber and W.S. Stornetta. Seure names for bit-strings. In Pro-eedings of the 4th ACM Conferene on Computer and CommuniationSeurity, pages 28�35. ACM Press, April 1997.[MQ97℄ H. Massias and J.-J. Quisquater. Time and ryptography. Tehnialreport, TIMESEC Projet (Federal Governement Projet, Belgium),1997. Available at http://www.die.ul.a.be/rypto/TIMESEC.html.[PRQ+98℄ B. Preneel, B. Van Rompay, J.-J. Quiquater, H. Massias, and X. SerretAvila. Design of a timestamping system. Tehnial report, TIMESECProjet (Federal Governement Projet, Belgium), 1998. To be avail-able at http://www.die.ul.a.be/rypto/TIMESEC.html.


